Exercise 1.52

The vector $\overrightarrow{\boldsymbol{A}}$ is 3.50 cm long and is directed into this page. Vector $\overrightarrow{\boldsymbol{B}}$ points from the lower right corner of this page to the upper left corner of this page. Define an appropriate right-handed coordinate system, and find the three components of the vector product $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$, measured in cm^{2}. In a diagram, show your coordinate system and the vectors $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}$?

Solution

Let the page be the $x y$-plane.

Since B goes from the bottom right to the top left, it forms an angle of 45° with the y-axis. Write formulas for the given vectors.

$$
\begin{aligned}
& \mathbf{A}=3.50\langle 0,0,-1\rangle \mathrm{cm} \\
& \mathbf{B}=|\mathbf{B}|\left\langle-\sin 45^{\circ}, \cos 45^{\circ}, 0\right\rangle \mathrm{cm}
\end{aligned}
$$

The magnitude of \mathbf{B} isn't given, so just leave it as $|\mathbf{B}|$. Calculate the cross product of \mathbf{A} and \mathbf{B}.

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
0 & 0 & -3.50 \\
-|\mathbf{B}| \sin 45^{\circ} & |\mathbf{B}| \cos 45^{\circ} & 0
\end{array}\right| \\
& =\hat{\mathbf{x}}\left[(0)(0)-(-3.50)\left(|\mathbf{B}| \cos 45^{\circ}\right)\right]-\hat{\mathbf{y}}\left[(0)(0)-(-3.50)\left(-|\mathbf{B}| \sin 45^{\circ}\right)\right] \\
& =3.50|\mathbf{B}| \cos 45^{\circ} \hat{\mathbf{x}}+3.50|\mathbf{B}| \sin 45^{\circ} \hat{\mathbf{y}} \\
& =3.50 \mid \mathbf{\mathbf { z }}\left[(0)\left(|\mathbf{B}| \cos 45^{\circ}\right)-(0)\left(-|\mathbf{B}| \sin 45^{\circ}\right)\right] \\
& =3.50|\mathbf{B}|\left(\frac{\hat{\mathbf{x}}}{\sqrt{2}}+\frac{\hat{\mathbf{y}}}{\sqrt{2}}\right) \\
& =\frac{\left.3.50|\mathbf{B}| 5^{\circ} \hat{\mathbf{y}}\right)}{\sqrt{2}}(\hat{\mathbf{x}}+\hat{\mathbf{y}}) \\
& =\frac{3.50|\mathbf{B}|}{\sqrt{2}}\langle 1,1,0\rangle \mathrm{cm}^{2}
\end{aligned}
$$

Consequently, $\mathbf{A} \times \mathbf{B}$ also lies in the $x y$-plane but perpendicular to \mathbf{B}.

